Superradiance of degenerate Fermi gases in a cavity.

نویسندگان

  • Yu Chen
  • Zhenhua Yu
  • Hui Zhai
چکیده

In this Letter we consider spinless Fermi gases placed inside a cavity and study the critical strength of a pumping field for driving a superradiance transition. We emphasize that the Fermi surface nesting effect can strongly enhance the superradiance tendency. Around certain fillings, when the Fermi surface is nearly nested with a relevant nesting momentum, the susceptibility of the system toward a checkboard density-wave ordered state is greatly enhanced in comparison with a Bose gas with the same density, because of which a much smaller (sometime even vanishingly small) critical pumping field strength can give rise to superradiance. This effect leads to interesting reentrance behavior and a topologically distinct structure in the phase diagram. Away from these fillings, the Pauli exclusion principle brings about the dominant effect for which the critical pumping strength is lowered in the low-density regime and increased in the high-density regime. These results open the prospect of studying the rich phenomena of degenerate Fermi gases in a cavity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conductivity Coefficient Modeling in Degenerate and Non-Degenerate Modes on GNSs

Carbon nanoscrolls (CNSs) with tubular structure similar to the open multiwall carbonnanotube have been of hot debate during recent years. Due to its unique property, Graphene Nanoscroll (GNS) have attracted many research groups’ attention and have been used by them. They specially studied on energy storage devices such as batteries and super capacitors. These devices can be schematically...

متن کامل

Fiftyfold improvement in the number of quantum degenerate fermionic atoms.

We have produced a quantum degenerate 6Li Fermi gas with up to 7 x 10(7) atoms, an improvement by a factor of 50 over all previous experiments with degenerate Fermi gases. This was achieved by sympathetic cooling with bosonic 23Na in the F=2, upper hyperfine ground state. We have also achieved Bose-Einstein condensation of F=2 sodium atoms by direct evaporation.

متن کامل

Degenerate Fermi gases of ytterbium.

Evaporative cooling was performed to cool fermionic 173Yb atoms in a crossed optical dipole trap. The large elastic collision rate leads to efficient evaporation and we have successfully cooled the atoms to 0.37+/-0.06 of the Fermi temperature, that is to say, to a quantum degenerate regime. In this regime, a plunge of evaporation efficiency was observed as a result of Fermi degeneracy.

متن کامل

Superradiance Induced Particle Flow via Dynamical Gauge Coupling.

We study fermions that are gauge coupled to a cavity mode via Raman-assisted hopping in a one-dimensional lattice. For an infinite lattice, we find a superradiant phase with an infinitesimal pumping threshold which induces a directed particle flow. We explore the fate of this flow in a finite lattice with boundaries, studying the nonequilibrium dynamics including fluctuation effects. The short-...

متن کامل

Degenerate Quantum Gases and Bose-einstein Condensation

After a brief historical introduction to Bose-Einstein condensation and Fermi degeneracy, we discuss theoretical results we have recentely obtained for trapped degenerate quantum gases by means of a thermal field theory approach. In particular, by using Gross-Pitaevskii and Bogoliubov-Popov equations, we consider thermodynamical properties of two Bosonic systems: a gas of Lithium atoms and a ga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 112 14  شماره 

صفحات  -

تاریخ انتشار 2014